

Multi-agent Confrontation System Based on Reinforcement Learning

Qianying Lia, Baolong Guob, Zhe Huangc and Cheng Lid
School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China

aliqianying2020@foxmail.com, bblguo@xidian.edu.cn, chuangz@stu.xidian.edu.cn, dlicheng812@stu.xidian.
edu.cn

Keywords: Multi-agent, Adversarial System, Deep Reinforcement Learning, Actor-Critic
Framework

Abstract: The development of machine learning technology has so far no longer relied entirely on
artificial power in adversarial decision-making, but there has been an updated decision competition.
The climax of the development of artificial intelligence and machine computing capabilities has
provided powerful technical support and hardware support for the development of intelligent
adversarial systems. The improved actor-critic extended multi-agent strategy gradient method
(ACEM) is mainly used to optimize the behavior decision of multi-agent cooperation and hostility.
This algorithm introduces extended strategy review information on the basic actor-critic framework
for reward calculation. The use of adversarial strategy inference reduces the impact of
environmental instability on strategy selection. This method has significantly improved the degree
of completion of target tasks in cooperative and hostile environments.

1. Introduction
The development of machine learning technology has so far no longer depended entirely on

artificial power in adversarial decision-making, but there has been newer decision competition. The
climax of the development of artificial intelligence and machine computing capabilities has provided
powerful technical and hardware support for the development of intelligent adversarial systems. In
recent years, from the popular AlphaGo to AlphaZero, it has revealed new changes of the agent
decision system. In order to enable the agent to achieve more efficient and real-time policy control in
the confrontation, the agent confrontation has always been a hot field in the development of artificial
intelligence. Currently the mainstream Agent policy systems mainly include Hierarchical
Decision-making System (HDS) and Decision Tree-based Decision-making (DT-DM). HDS system
is generally used in single agent training by combine scene segmentation and area calculation to
select strategies from the overall height analysis. The DT-DM system uses multi-level layering to
divide agent strategies, it is mainly used for policy selection when agents have weak correlations and
a single environment. This article aims at the centralized strategy method of the agent and expands
on the single agent strategy learning based on the deep reinforcement learning method. This paper
completes multi-agent centralized strategy learning and independently executes tasks in order to
achieve the optimal strategy selection problem of cooperation and competition mode. The optimal
strategy selection problem is analyzed and compared through the design of different experimental
scenarios under the multi-agent cooperative competition and multi-type combination mode.

2. Agent Strategy Algorithm
2.1 Markov Model

The Markov model for multi-agents consists of the following parts:
(1) A group of states S , Used to describe the possible states of all agents.
(2) A group of agent behaviors 1 2, NA A A .
(3) A set of observations for each agent 1 2, NO O O .

2020 2nd International Conference on Electronic Science and Automation Control (ESAC 2020)

Published by CSP © 2020 the Authors 166

In the experiment, each agent uses a random strategy : [0,1]i iO Aθπ ×  and the agent's own state
transition function 1 2: NT S A A A S× × × × S to select each agent i Action. Each agent i receives
a reward according to its own state and the action :i ir S A× S selected by the agent, and receives
the state of the private observation environment related to the state o :i iS OS . The initial state of
the agent is determined by : [0,1]Sρ S . The goal of each agent is to obtain the maximum expected
reward as in formula (1):

0
T t t

i t iR rγ==∑ (1)

In the formula: γ indicates the discount factor, and T indicates the time range.

2.2 Actor-Critical Framework Algorithm Principle
The Actor-Critic (AC) algorithm is divided into two parts, the Actor network and the Critic

network. The Actor network is responsible for selecting the appropriate action in the continuous
action space. Critic network is responsible for assessing the performance of the Actor network and
guiding the Actor's next stage of action, while implementing single-step updates. The Actor network
will usually adopt the strategy gradient method, and its parameter gradient is:

 () ()
1 1

1 , log |
nTN

n n n n
t t t t

n t
R Q s a p a s

N
pθ

θ θ
− =

∇ = ∇∑∑ (2)

The Critic network updates its parameters according to the squared error between the estimated Q
value and the actual Q value, and its loss function is:

 () ()
1

2

1 1
1 1

1 max , ,
n

n
t

TN
n n n n n

t t t t t
an t

loss r Q s a Q s a
N

πθ πθ

+
+ +

− =

 = + − 
 ∑∑ (3)

Fig. 1 is a schematic diagram of the overall framework of the Actor-Critic algorithm.

Actor

Critic

Environment

TD Error

Reward

ActionState

Policy

Value
Function

State

Fig. 1 AC algorithm framework

3. Improved multi-agent strategy algorithm
3.1 Multi-agent strategy model

The article uses deep reinforcement learning as the basis for agent strategy learning. The overall
environment setting conforms to the Markov model, and an extended strategy gradient method based
on actor-critic framework is proposed. Agent training uses an independent execution framework for
centralized strategy learning. The algorithm expands the strategy evaluation information based on the
AC framework, assuming that there are N agents, and the agent's policy parameter is

167

1={ , , }Nθ θ θ . The policy set of all agents is 1={ , }Nπ π π， . So the expected gradient of agent i
according to () []i iJ E Rθ = is:

 - 1~ , ~
() [log (|)Q (, , ,)]

i ii i
i i i i i Ns p a

J E a o s a aµ
p

θ θp
θ p∇ = ∇  (4)

In the formula, 1Q (, , ,)i Nx a aπ
 represents a centralized agent action value function. It takes the

actions of all agents 1, , Na a as input and outputs state x and Q value of agent i . In the simplest

case, 1(, ,)Ns o o− =  contains the environment observed by all agents, and can also contain more

information. Qi
π for each agent is learned independently, so each agent can have any reward

structure, including conflict rewards in the competitive environment of the agent.
Extending the above formula (4) to the agent's deterministic strategy method. Assuming that N

consecutive policies are iθµ and the parameter iθ is recorded as iµ , then its gradient can be
expressed as:

 , ~ 1 ()() [(|) Q (, , ,) |]
i i i i i ii x a D i i i a i N a oJ E a o s a aµ
θ θ µµ µ =∇ = ∇ ∇  (5)

In the formula, experience pool D contains 1 1(, , , , , , ,)N Nx x a a r r′
  information, which

records the experience of all agents. The centralized agent action value function Qi
µ can be

described as:

 2
, , , 1 1 ()() [(Q (, , ,)-)], + Q (, , ,) |

j j ji s a r s i N i i N a oLoss E s a a y y r s a aµ µ
µθ γ ′

′ ′ ′=′ ′ ′= =  (6)

In the formula, 1
={ }

Nθ θµ µ µ′ ′′
， ， is an agent strategy set with a delay parameter of iθ ′ . The above

method is the basic idea of an improved multi-agent strategy algorithm-if the actions of all agents are
known, the environment is stationary even if the strategy changes. Because:

 1 1 1 1 1(| , , , , , ,) (| , , ,) (| , , , , , ,)N N N N NP s s a a P s s a a P s s a aπ π π π′ ′ ′ ′ ′= =     (7)

This holds for any agent policy set i iπ π ′≠ .

3.2 Agent strategy inference

In order to avoid assuming the strategies of other agents, the real strategy jµ of each agent i to

agent j can be approximated by  j
i

µ∅ (∅ is an approximate parameter, hereafter referred to as


j

iµ). The entropy regularizer can be used to learn the agent j strategy:

  

,() [log (|) ()]
j j

j jj
i ii o a j jL E a o Hµ l µ∅ = − + (8)

In the formula, H is the entropy of j agent's strategy. According to the approximate calculation
of the strategy, the formula can be obtained:

   

1

1Q (, (), , (), , ())
N

i ii i i i Ny r s o o oµγ µ µ µ′ ′ ′′ ′= +  

 (9)

In the formula,  ' j

iµ is the approximate value of agent strategy  j

iµ . Before updating the agent's Q

function Qi
µ , we use a single gradient step size of each agent j in the experience pool to update

j
i∅ .

168

3.3 Agent Cooperation
In the interaction between multi-agent reinforcement learning and the environment, there is a

problem of environmental instability caused by policy changes, which affects decision-making.
Therefore, in order to reduce the impact of this situation, multi-agent training can develop strategies
by evaluating the behavior of the other party. We can train K different coping strategies to
randomly select a specific sub-strategy for each agent to be executed in each round, in order to train
the agents to evaluate each other's strategy-making methods.

Assuming that iµ is a set of K different strategies for the agent, and the sub-strategy k is
represented by ()k

iµ , the formula for the maximum value of each agent i is:

 ()~ (1,), ~ , ~
() [(,)]k

i
e i ik unif K s p a

M E R s aµ µ
µ = (10)

Since the agent will execute different sub-strategies in different scenarios, an experience pool
()k
iD is maintained for each sub-strategy ()k

iµ of agent i . Then the gradient of ()k
iθ can be

expressed as:

() () () ()
()

1, ~ ()

1()= [(|) Q (, , ,) |]i
k k k kii i i i i

k
e i i i i a NX a D ai o

J E a o x a a
K

µ
θ θ µ

µ µ
=

∇ ∇ ∇  (11)

4. Experimental result
The parameters of the improved multi-agent strategy method are composed of two layers of

ReLU and MLP. The Gumbel-Softmax evaluator is used to better communicate discrete messages
between agents. The experiment evaluates the state and rewards of the improved multi-agent strategy
method in the case of cooperative and hostile environment.

The state of the improved multi-agent strategy algorithm in the cooperative task environment of
the agent is shown in Fig. 2. The goal of the experiment in the cooperative environment is that the
agent is as close as possible to the target under the guidance of the commander. The red dot in the
figure indicates the target position, and the green dot is the commander.

Fig. 2 Cooperative environment movement of the algorithm in this paper

After training 30,000 times in the cooperative task environment of the agent, we calculate the
average success rate of the agent reaching the target in each round, and record the average distance
of the cooperative agent from the target. Table 1 is the statistical comparison data between the
improved algorithm of this paper and AC algorithm, depth strategy gradient algorithm, etc.

Table 1 Reach rate and distance in cooperative agent tasks

Policy Reach rate Distance
ACEM(our) 81.8% 0.247

DDPG 36.2% 0.439
DQN 28.7% 0.712
AC 20.5% 2.364

The objective of the experiment in the hostile environment is to avoid the collision of the red
agent with the black agent as much as possible. The state of the improved multi-agent strategy
algorithm in the hostile environment of the agent is shown in Fig. 3 below.

169

Fig. 3 Hostile environment movement of the algorithm in this paper

5. Conclusions
This paper introduces an extended multi-agent strategy gradient method based on actor-critic

(ACEM). It uses extended strategy evaluation information to perform reward calculation after agents
perform strategic actions, and trains a series of coping strategies by inferring other agent strategies.
In each round, the agent randomly selects sub-strategies to reduce the impact of environmental
instability on strategy selection. From the experimental results, the agent can choose effective
strategies in a cooperative and hostile environment. However, this method requires higher hardware
equipment, and the convergence speed is slower when the number of agents is large, so the further
improvement is needed.

References
[1] C.Altafini.Consensus problems on networks with antagonistic interactions [J], IEEE Trans. on
Automatic Control, 2013, 58 (4): 935-946.
[2] J. Hu, Z. H. Xiao, Y. L. Zhou,et al.Formation control over antagonistic networks [C].
Proceeding of 32nd Chinese Control Conference, July 26-28, Xi’an, China, 2013, : 6879-6884.
[3] E.V., Maria, P.Misra.On the consensus and bipartite consensus in high-order multi-agent
dynamical systems with antagonistic interactions, Systems & Control Letters, 2014, 66:94-103.
[4] Z.Meng, G. Shi, K. H. Johansson, et al. Modulus Consensus over Networks with Antagonistic
Interactions and Switching Topologies.
[5] Q.Wang, Y. Wang. Cluster synchronization of a class of multi-agent systems with a bipartite
graph topology. [J]Science China Information Sciences January, 2014, 57(1): 1-11.
[6] Qi G J, Larochelle H, Huet B, et al. Guest Editorial: Deep Learning for Multimedia Computing
[J]. IEEE Transactions on Multimedia, 2015, 17 (11): 1873-1874.
[7] El-Tantawy S, Abdulhai B, Abdelgawad H. Multiagent reinforcement learning for integrated
network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale
application on downtown Toronto [J]. IEEE Transactions on Intelligent Transportation Systems,
2013, 14(3): 1140-1150.
[8] Qiu J, Gao H, Ding S X. Recent advances on fuzzy-model-based nonlinear networked control
systems: a survey [J]. IEEE Transactions on Industrial Electronics, 2016, 63 (2): 1207-1217.
[9] Huang S C, Do B H. Radial basis function based neural network for motion detection in
dynamic scenes [J]. IEEE transactions on cybernetics, 2014, 44(1): 114-125.

170

	1. Introduction
	2. Agent Strategy Algorithm
	3. Improved multi-agent strategy algorithm
	4. Experimental result
	5. Conclusions
	References

