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Abstract: The development of machine learning technology has so far no longer relied entirely on 
artificial power in adversarial decision-making, but there has been an updated decision competition. 
The climax of the development of artificial intelligence and machine computing capabilities has 
provided powerful technical support and hardware support for the development of intelligent 
adversarial systems. The improved actor-critic extended multi-agent strategy gradient method 
(ACEM) is mainly used to optimize the behavior decision of multi-agent cooperation and hostility. 
This algorithm introduces extended strategy review information on the basic actor-critic framework 
for reward calculation. The use of adversarial strategy inference reduces the impact of 
environmental instability on strategy selection. This method has significantly improved the degree 
of completion of target tasks in cooperative and hostile environments.  

1. Introduction 
The development of machine learning technology has so far no longer depended entirely on 

artificial power in adversarial decision-making, but there has been newer decision competition. The 
climax of the development of artificial intelligence and machine computing capabilities has provided 
powerful technical and hardware support for the development of intelligent adversarial systems. In 
recent years, from the popular AlphaGo to AlphaZero, it has revealed new changes of the agent 
decision system. In order to enable the agent to achieve more efficient and real-time policy control in 
the confrontation, the agent confrontation has always been a hot field in the development of artificial 
intelligence. Currently the mainstream Agent policy systems mainly include Hierarchical 
Decision-making System (HDS) and Decision Tree-based Decision-making (DT-DM). HDS system 
is generally used in single agent training by combine scene segmentation and area calculation to 
select strategies from the overall height analysis. The DT-DM system uses multi-level layering to 
divide agent strategies, it is mainly used for policy selection when agents have weak correlations and 
a single environment. This article aims at the centralized strategy method of the agent and expands 
on the single agent strategy learning based on the deep reinforcement learning method. This paper 
completes multi-agent centralized strategy learning and independently executes tasks in order to 
achieve the optimal strategy selection problem of cooperation and competition mode. The optimal 
strategy selection problem is analyzed and compared through the design of different experimental 
scenarios under the multi-agent cooperative competition and multi-type combination mode. 

2.  Agent Strategy Algorithm 
2.1 Markov Model 

The Markov model for multi-agents consists of the following parts: 
(1) A group of states S , Used to describe the possible states of all agents. 
(2) A group of agent behaviors 1 2, NA A A .  
(3) A set of observations for each agent 1 2, NO O O .  
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In the experiment, each agent uses a random strategy : [0,1]i iO Aθπ ×  and the agent's own state 
transition function 1 2: NT S A A A S× × × ×   to select each agent i Action. Each agent i  receives 
a reward according to its own state and the action :i ir S A×   selected by the agent, and receives 
the state of the private observation environment related to the state o :i iS O . The initial state of 
the agent is determined by : [0,1]Sρ  . The goal of each agent is to obtain the maximum expected 
reward as in formula (1): 

0
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i t iR rγ==∑                                    (1) 

In the formula: γ indicates the discount factor, and T indicates the time range. 

2.2 Actor-Critical Framework Algorithm Principle 
The Actor-Critic (AC) algorithm is divided into two parts, the Actor network and the Critic 

network. The Actor network is responsible for selecting the appropriate action in the continuous 
action space. Critic network is responsible for assessing the performance of the Actor network and 
guiding the Actor's next stage of action, while implementing single-step updates. The Actor network 
will usually adopt the strategy gradient method, and its parameter gradient is: 
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The Critic network updates its parameters according to the squared error between the estimated Q 
value and the actual Q value, and its loss function is: 
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Fig. 1 is a schematic diagram of the overall framework of the Actor-Critic algorithm. 
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Fig. 1 AC algorithm framework 

3.  Improved multi-agent strategy algorithm 
3.1 Multi-agent strategy model 

The article uses deep reinforcement learning as the basis for agent strategy learning. The overall 
environment setting conforms to the Markov model, and an extended strategy gradient method based 
on actor-critic framework is proposed. Agent training uses an independent execution framework for 
centralized strategy learning. The algorithm expands the strategy evaluation information based on the 
AC framework, assuming that there are N  agents, and the agent's policy parameter is 
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1={ , , }Nθ θ θ . The policy set of all agents is 1={ , }Nπ π π， . So the expected gradient of agent i  
according to ( ) [ ]i iJ E Rθ =  is: 
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In the formula, 1Q ( , , , )i Nx a aπ
  represents a centralized agent action value function. It takes the 

actions of all agents 1, , Na a  as input and outputs state x and Q value of agent i . In the simplest 

case, 1( , , )Ns o o− =   contains the environment observed by all agents, and can also contain more 

information. Qi
π for each agent is learned independently, so each agent can have any reward 

structure, including conflict rewards in the competitive environment of the agent. 
Extending the above formula (4) to the agent's deterministic strategy method. Assuming that N

consecutive policies are iθµ  and the parameter iθ  is recorded as iµ , then its gradient can be 
expressed as: 

 , ~ 1 ( )( ) [ ( | ) Q ( , , , ) | ]
i i i i i ii x a D i i i a i N a oJ E a o s a aµ
θ θ µµ µ =∇ = ∇ ∇             (5) 

In the formula, experience pool D  contains 1 1( , , , , , , , )N Nx x a a r r′
   information, which 

records the experience of all agents. The centralized agent action value function Qi
µ  can be 

described as: 

 2
, , , 1 1 ( )( ) [(Q ( , , , )- ) ], + Q ( , , , ) |

j j ji s a r s i N i i N a oLoss E s a a y y r s a aµ µ
µθ γ ′

′ ′ ′=′ ′ ′= =      (6) 

In the formula, 1
={ }

Nθ θµ µ µ′ ′′
， ， is an agent strategy set with a delay parameter of iθ ′ . The above 

method is the basic idea of an improved multi-agent strategy algorithm-if the actions of all agents are 
known, the environment is stationary even if the strategy changes. Because: 

 1 1 1 1 1( | , , , , , , ) ( | , , , ) ( | , , , , , , )N N N N NP s s a a P s s a a P s s a aπ π π π′ ′ ′ ′ ′= =        (7) 

This holds for any agent policy set i iπ π ′≠ . 

3.2 Agent strategy inference 

In order to avoid assuming the strategies of other agents, the real strategy jµ  of each agent i  to 

agent j  can be approximated by  j
i

µ∅  (∅  is an approximate parameter, hereafter referred to as 


j

iµ ). The entropy regularizer can be used to learn the agent j strategy: 
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In the formula, H  is the entropy of j agent's strategy. According to the approximate calculation 
of the strategy, the formula can be obtained: 

   

1

1Q ( , ( ), , ( ), , ( ))
N

i ii i i i Ny r s o o oµγ µ µ µ′ ′ ′′ ′= +  

                (9) 

In the formula,  ' j

iµ  is the approximate value of agent strategy  j

iµ . Before updating the agent's Q 

function Qi
µ , we use a single gradient step size of each agent j  in the experience pool to update 

j
i∅ .  
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3.3 Agent Cooperation 
In the interaction between multi-agent reinforcement learning and the environment, there is a 

problem of environmental instability caused by policy changes, which affects decision-making. 
Therefore, in order to reduce the impact of this situation, multi-agent training can develop strategies 
by evaluating the behavior of the other party. We can train K  different coping strategies to 
randomly select a specific sub-strategy for each agent to be executed in each round, in order to train 
the agents to evaluate each other's strategy-making methods.  

Assuming that iµ  is a set of K  different strategies for the agent, and the sub-strategy k  is 
represented by ( )k

iµ , the formula for the maximum value of each agent i  is: 
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Since the agent will execute different sub-strategies in different scenarios, an experience pool 
( )k
iD  is maintained for each sub-strategy ( )k

iµ  of agent i . Then the gradient of ( )k
iθ  can be 

expressed as: 
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4.  Experimental result 
The parameters of the improved multi-agent strategy method are composed of two layers of 

ReLU and MLP. The Gumbel-Softmax evaluator is used to better communicate discrete messages 
between agents. The experiment evaluates the state and rewards of the improved multi-agent strategy 
method in the case of cooperative and hostile environment. 

The state of the improved multi-agent strategy algorithm in the cooperative task environment of 
the agent is shown in Fig. 2. The goal of the experiment in the cooperative environment is that the 
agent is as close as possible to the target under the guidance of the commander. The red dot in the 
figure indicates the target position, and the green dot is the commander. 

 
Fig. 2 Cooperative environment movement of the algorithm in this paper 

After training 30,000 times in the cooperative task environment of the agent, we calculate the 
average success rate of the agent reaching the target in each round, and record the average distance 
of the cooperative agent from the target. Table 1 is the statistical comparison data between the 
improved algorithm of this paper and   AC algorithm, depth strategy gradient algorithm, etc. 

Table 1 Reach rate and distance in cooperative agent tasks 

Policy Reach rate Distance 
ACEM(our) 81.8% 0.247 

DDPG 36.2% 0.439 
DQN 28.7% 0.712 
AC 20.5% 2.364 

The objective of the experiment in the hostile environment is to avoid the collision of the red 
agent with the black agent as much as possible. The state of the improved multi-agent strategy 
algorithm in the hostile environment of the agent is shown in Fig. 3 below. 
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Fig. 3 Hostile environment movement of the algorithm in this paper 

5.  Conclusions 
This paper introduces an extended multi-agent strategy gradient method based on actor-critic 

(ACEM). It uses extended strategy evaluation information to perform reward calculation after agents 
perform strategic actions, and trains a series of coping strategies by inferring other agent strategies. 
In each round, the agent randomly selects sub-strategies to reduce the impact of environmental 
instability on strategy selection. From the experimental results, the agent can choose effective 
strategies in a cooperative and hostile environment. However, this method requires higher hardware 
equipment, and the convergence speed is slower when the number of agents is large, so the further 
improvement is needed. 
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